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Abstract. A method is given for computing the equal-time commutators of a Bose-Einstein 
field with constraints, directly from the lagrangian density, without necessitating the 
introduction of conjugate variables or solving equations of motion. The method is 
illustrated by the vector meson field. 

1. General theory 

If 9 ( @ ( x ) ,  &x)) is the lagrangian density and L = J 9 d3x is the Lagrange function 
of a classical deterministic Bose-Einstein field system, Hamilton’s stationary action 
principle, 6s L dt = 0, leads to the equations of motion and constraint 

where 8 is the variational derivative, and d is the total derivative at fixed x. If we con- 
sider variations in which the end points of the orbit vary we obtain the result 

where 

X is the hamiltonian density (Ziman 1969) and the hamiltonian of the system is given 
by H = JX d3x. We can define the Lagrange bracket, 6, x 6,, by 

6, x 6, = j d l ~ i , ( X ” ) .  6 2 ~ z ( x ” ) - 6 2 n ~ ( x ” ) ,  6,@(x”) 

- ~ , X ( X ” ) .  6 2 t + 6 2 2 ( ~ ” ) .  6 , t )  d3x“ = -6, x 62. (4) 

It will be sufficient to consider only variations for which 6, t  = 6,t = 0. It can be 
shown (Allcock 1973) that any functional G,[@(x, t), @(x, t ) ]  of the orbit variables 
@(x, t ) ,  &(x, t )  at a fixed time t generates a Lagrange-bracket-preserving transformation 
6, of the orbit variables at the time t ,  according to the equation 

J 

6Gl = 6, ~ 6 ,  ( 5 )  

where 6 is an arbitrary displacement of the orbit variables at the time t and both 6 
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and 6, obey the constraints of the system. 6, x 6  is defined in a similar manner to 
6, x 6,. 6, so defined is called an infinitesimal contact transformation of the orbit 
variables at time t. 

It can then be shown (Allcock 1973) that if G,  and G, are any two functionals of 
the field variables and 6, and 6, are the contact transformations they respectively 
induce, then the equal-time Poisson bracket of G, and G, is given by 

G , ,  G, = 6, x 6, = 6,Gl = -6,GZ (6) 

and hence, if G, and G, are functionals of the variables of the corresponding quantum 
system, their equal-time commutator (Dirac 1947) is given by 

0 
[G,,G,I = i d ,  x6,, (7) 

to within possible ambiguities arising from the inequivalence of different quantal factor 
orderings. 

To allow for the fact that 64" and 6& obey the equations of constraint, t+bm(x) = 0, 
of the system, we introduce continuous Lagrange multipliers i"(x) and write equation 
( 5 )  as 

A"(x') 6$,(x') d3x' = 6, x 6. (8) 

We can then regard 6 as being completely arbitrary. 
We now define functional derivatives dG,/d$"(x) and dG,/d&x) of G,  by 

Similarly we define functional derivatives of $,,,(XI) and ~"(x") .  Substituting into (7) 
and equating coefficients of 64"(x") and 6@(x") we obtain the two equations 

The equations of constraint become 6,t+bm = 0, or explicitly 

A similar set of equations hold for S,+" and 6,& generated by the functional G,. It 
can be shown (Allcock 1974) that the rank of the system of equations ( 9 H l l )  is 
maximal for a deterministic system, and therefore the solution is unique. Hence, we 
can compute the equal-time Poisson brackets for any two functionals of the field 
variables by (6) .  
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2. Real vector meson (Proca-Wentzel-Kemmer) field 

Notation. Unprimed variables are functions of x, primed variables of x’, etc, a,, a/dx”, 
c p  E d/dx” etc. gvv is the metric tensor with diagonal elements 1, - 1, - 1, - 1. Roman 
indices run from 1 to 3, Greek indices from 0 to 3. (h  = c = 1.) 

We take the lagrangian density of the vector meson field (Wentzel 1949, Proca 
1936, Pauli 1941, Kemmer 1938, Schwinger 1970) to be 

- 7  

The stationary action principle leads to the equations of motion 

and the primary equation of constraint 

By taking the time derivative of $1 (Allcock 1974) we have the secondary equation 
of constraint 

$ 2 = d + ’ = O .  - Y (15) 

Differentiation of $2 with respect to time yields no further information about 4’ and 
$’, and so and t,h2 are the only two constraints on the system. 

From (3) we define 7cv(x) by 

n,(x) = d,q!P(x)+ @(x) 

7co(x) 0. 

The second of equations (16) leads to well known difficulties (Wentzel 1949) in the 
usual formalism which can only be dealt with by ad hoc manipulations. The present 
method deals with these difficulties without recourse to heuristic methods. 

By comparison with (8) we have 

Let G, @(x), we have 

d*> = s3(X’-x”)6:. 

Substituting the above values into equations (10H12) we find that the displacements 
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With G, $‘(x’) and G, = &(x) we have 

= 6, x 6, = -6,G, = - 6 2 $ u ( ~ ‘ )  

= - i[&(x), &(xf)]. (26) 
The commutation relations given in (24H26) are equivalent to those given in the 

standard texts on the vector meson field (eg Wentzel 1949, Kemmer 1938). The method 
given is no more complicated than one would expect, in view of the results, and gives 
the quantum relations directly without the ad hoc methods of the canonical formalism. 
An application of the method will be given for the Rarita-Schwinger field for a particle 
with spin in a subsequent paper. 
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